Understanding processes leading to surface gusts by modeling windstorms at very high resolution

Florian Pantillon, Sophia Brumer, Jean-Pierre Chaboureau, Juan Escobar, Wahiba Lfarh, Nicolas Maury, Joris Pianezze, Philippe Wautelet

10th European Windstorm Workshop Bern, 5–7 February 2025

Project anr[®]JCJC "WINDGUST" (2022–2025)

1. Characterize the fine-scale processes responsible for the formation of wind gusts

- 2. Quantify the sensitivity of wind gusts to the representation of surface processes
- **3.** Explore the feedback of local processes on extratropical cyclone dynamics

Two case studies

7 Feb 2025

- **Deep convection:** explicit
- Shallow convection: parameterized
- Turbulence: parameterized

- **Deep convection:** explicit
- Shallow convection: explicit
- **Turbulence:** partly explicit (large eddies)

Low-level winds associated with cold conveyor belt

Mesoscale simulation $\Delta x = 1 \text{ km}$

Trajectories where **winds > 40 m/s** at 15:15 UTC

Zoom in on the strong wind area

Wind structures approximately aligned with mean wind = roll vortices transporting momentum downward

Impact of resolution on near-surface winds

- Large-eddy simulation $\Delta x=200m$ close to $\Delta x=100m$ and $\Delta x=50m$
- Mesoscale simulation ∆x=1km misses tails of distribution but <u>overestimates</u> average wind vs. large-eddy simulations

Beyond resolution: sensitivity to air-sea exchanges

Accounting for sea spray increases surface heat fluxes (Andreas et al. 2015)

- **Sensible** heat fluxes → **stretched** rolls + **enhanced** momentum transport
- Latent heat fluxes \rightarrow weak impact

Two case studies

39

7 Feb 2025

Numerical simulations

- Mesoscale simulation $\Delta x=1.6$ km
- Large-Eddy Simulation $\Delta x \ge 100$ m Thanks to porting of code on GPU

Video here! https://youtu.be/Zh90yTck9g4

Low-level winds associated with 3 different airstreams

Insights into airstreams @ $\Delta x=200m$

Two branches of the sting jet in the cloud head

- **SJ1** descends deep toward the surface
- SJ2 remains above the boundary layer
- Also two DI branches behind and above the SJ

Beyond resolution: wave impact on near-surface winds

Meso-NH coupled with wave model Wavewatch III using Wave-Age-dependent Stress Parameterisation (Bouin et al. 2023)

• Younger waves in SJ, DI, CCB, WCB regions

- Older waves behind storm (cold sector)
 - Coupled model vs. Meso-NH only
 - Younger waves winds decrease
 - Older waves winds increase

Are fine-scale wind structures realistic? SAR!

Storm Alex on 02 Oct 2020

10m wind Meso-NH Δx =100m

Synthetic aperture radar (SAR) observations <u>https://ovl.oceandatalab.com/</u>

7 Feb 2025

Understanding processes leading to surface gusts by modeling windstorms at very high resolution

Large-eddy simulations (hectometric resolution) with the Meso-NH research model on GPU Escobar et al., 2024. <u>https://doi.org/10.5194/egusphere-2024-2879</u>

Mediterranean cyclone Adrian	Atlantic cyclone Alex
Vertical momentum transport in cold conveyor belt	Two branches of sting jet
 driven by roll vortices 	\rightarrow only one descends to the surface
 controlled by surface heat fluxes 	Contrasted response of wave coupling
Lfarh et al., 2023. https://doi.org/10.1175/MWR-D-23-0099.1	→ wind decrease in cloud head
Lfarh et al., 2024. https://doi.org/10.1029/2023JD040191	Brumer et al., in prep.

Surface winds depend on accurate representation of

- **fine-scale processes** → *requires very high resolution*
- air-sea exchanges \rightarrow needs obs to constrain models

