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Introduction
Limited observational data for extreme windstorms pose 
challenges for developing robust catastrophe models. Current 
approach of applying regional climate models is too time-
consuming for creating extensive hazard datasets. We 
propose using generative models to produce independent 
wind fields, offering a scalable solution for risk assessment.

Data Description
ERA5 reanalysis from ECMWF
§ Spatial domain: 49°N to 59°N, 

8°W to 2°E (0.25° × 0.25°)
§ Period: 1940 – 2022
§ Variables: 10-m wind speed
§ Pre-processed to a 

normalized range of [0,1]

Methodology

§ Standard GAN: A baseline adversarial network
generator vs discriminator

§ WGAN-GP: Similar structure as Standard GAN but with 
Wasserstein loss and gradient penalty for better training stability

§ U-net Diffusion Model: Uses diffusion processes (denoising) to 
generate high-resolution outputs

§ Diffusion-GAN: Combines diffusion processes with adversarial 
training (distinguishing between noisy samples)
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§ Similar shape and 
density of contours

§ More dispersed 
distribution of the 
top 100 SSI cases à
more variability in 
the generated 
extremes

§ Standard GAN & 
WGAN-GP: 
Extremes with 
more negative PC2 
(more storms in the 
Scottish coast)

§ U-net diffusion 
model over-estimates 
return periods across 
the displayed range

§ Other models slightly 
over-estimates return 
periods at the rarer 
tail-end  (>103 days)

§ Standard GAN 
underestimates at the 
North Sea

§ WGAN-GP & 
Diffusion-GAN: 
Consistent in 
capturing reasonable 
distributions

Conclusion
§ Standard GAN: Struggles in replicating image quality and extreme events
§ WGAN-GP: Captures intensity well but sometimes misrepresents extremes
§ U-net Diffusion Model: Good visual quality but underestimates intensity
§ Diffusion-GAN: Best overall but overestimates most extreme intensity

Future work
§ Incorporating multiple meteorological variables and temporal dimensions
§ Expand approach to other meteorological hazards and regions
§ Identify the strengths (which regions/scenarios) of different models
§ Develop an ensemble approach for targeted optimization and applications
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Trade-offs between stability, variability, 
and the ability to represent extremes!


