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Introduction

Limited observational data for extreme windstorms pose
challenges for developing robust catastrophe models. Current
approach of applying regional climate models is too time-
consuming for creating extensive hazard datasets. We
propose using generative models to produce independent
wind fields, offering a scalable solution for risk assessment.

Data Description

ERAS reanalysis from ECMWEF
Spatial domain: 49°N to 59°N,
8°W to 2°E (0.25° x 0.25°)
Period: 1940 — 2022
Variables: 10-m wind speed
Pre-processed to a
normalized range of [0,1]
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WGAN-GP: Similar structure as Standard GAN but with
Wasserstein loss and gradient penalty for better training stability
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U-net Diffusion Model: Uses diffusion processes (denoising) to
generate high-resolution outputs
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Diffusion-GAN: Combines diffusion processes with adversarial
training (distinguishing between noisy samples)
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Results

Extreme Cases (Highest SSI)
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U-net diffusion
model over-estimates
return periods across
the displayed range
Other models slightly
over-estimates return
periods at the rarer
tail-end (>103 days)
Standard GAN
underestimates at the
North Sea

WGAN-GP &
Diffusion-GAN:
Consistent in
capturing reasonable
distributions

—— ERA5
Standard GAN
— WGAN-GP
—— U-net diffusion model
—— Diffusion-GAN

—— ERA5

Standard GAN
— WGAN-GP
—— U-net diffusion model
—— Diffusion-GAN
12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 10100.0 : 15.0 17.5 20.0 22.5 25.0 27.5 30.0

Wind Speed (m/s) Wind Speed (m/s)
Irish Sea North Sea

—— ERA5
Standard GAN
— WGAN-GP
—— U-net diffusion model
—— Diffusion-GAN

—— ERA5
Standard GAN
— WGAN-GP
—— U-net diffusion model
—— Diffusion-GAN

12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 . 15.0 17.5 20.0 22.5 25.0 27.5 30.0

Wind Speed (m/s) Wind Speed (m/s)

Conclusion

Standard GAN: Struggles in replicating image quality and extreme events
WGAN-GP: Captures intensity well but sometimes misrepresents extremes
U-net Diffusion Model: Good visual quality but underestimates intensity
Diffusion-GAN: Best overall but overestimates most extreme intensity

Future work

Incorporating multiple meteorological variables and temporal dimensions
Expand approach to other meteorological hazards and regions

|dentify the strengths (which regions/scenarios) of different models
Develop an ensemble approach for targeted optimization and applications



