

Using Generative Models to Produce Realistic Populations of UK Windstorms

Etron Tsoi^{1,2}, Kieran Hunt^{1,3}, Len Shaffrey^{1,3}, Atta Badii⁴, Richard Dixon^{1,5,6}, Ludovico Nicotina⁷

¹Department of Meteorology, University of Reading, UK ²Department of Marine Systems, Tallinn University of Technology, Tallinn, Estonia ³National Centre for Atmospheric Science, University of Reading, UK ⁴Department of Computer Science, University of Reading, UK ⁵CatInsight, London, UK; ⁶Oak Re, London, UK; ⁷Inigo, London, UK

Preprint Available:

ntroduction

Limited observational data for extreme windstorms pose challenges for developing robust catastrophe models. Current approach of applying regional climate models is too timeconsuming for creating extensive hazard datasets. We propose using generative models to produce independent wind fields, offering a scalable solution for risk assessment.

					-		
Extreme Cases (Highest SSI)					Spatial pattern	lmage quality	Storm intensity
Rank: 1 (SSI=122.95)	Rank: 2 (SSI=85.37)	Rank: 3 (SSI=79.63)	Rank: 4 (SSI=75.17)	Rank: 5 (SSI=74.3)			

Contact:

yeechun.tsoi@taltech.ee

Data Description

ERA5 reanalysis from ECMWF

- Spatial domain: 49°N to 59°N, 8°W to 2°E ($0.25^{\circ} \times 0.25^{\circ}$)
- Period: 1940 2022
- Variables: 10-m wind speed
- Pre-processed to a normalized range of [0,1]

Methodology

- - More dispersed distribution of the

Standard GAN: A baseline adversarial network generator vs discriminator

- WGAN-GP: Similar structure as Standard GAN but with Wasserstein loss and gradient penalty for better training stability
- **U-net Diffusion Model**: Uses diffusion processes (denoising) to generate high-resolution outputs

Return period (days) of wind speeds at four locations London Edinburah 10^{4} 10³ $\frac{2}{3}$ 10² — ERA5 — ERA5 — Standard GAN Standard GAN 10^{1} WGAN-GP WGAN-GP U-net diffusion model Diffusion-GAN Diffusion-GAN 10^{0} 10.0 12.5 15.0 25.0 27.5 30.0 15.0 22.5 25.0 27.5 30.0 17.5 20.0 22.5 12.5 17.520.0 Wind Speed (m/s) Wind Speed (m/s Irish Sea North Sea 10^{4} 10 10² — ERA5 ERA5 —— Standard GAN Standard GAN 10^{1} - WGAN-GP WGAN-GP — U-net diffusion model — U-net diffusion mode

U-net diffusion model over-estimates return periods across the displayed range Other models slightly over-estimates return periods at the rarer tail-end (>10³ days) Standard GAN underestimates at the North Sea WGAN-GP & **Diffusion-GAN**: Consistent in capturing reasonable

Diffusion-GAN: Combines diffusion processes with adversarial training (distinguishing between noisy samples)

References

- Besombes, C., and Coauthors, 2021: Producing realistic climate data with generative adversarial networks. Nonlinear Processes in Geophysics, 28(3).
- Brochet, C., and Coauthors, 2023: Multivariate Emulation of Kilometer-Scale Numberical Weather Predictions with Generative Adversarial Networks: A Proof of Concept. Aritificial Intelligence for the Earth Systems, 2(4).

distributions

Trade-offs between stability, variability, and the ability to represent extremes!

- **Standard GAN**: Struggles in replicating image quality and extreme events
- **WGAN-GP**: Captures intensity well but sometimes misrepresents extremes
- **U-net Diffusion Model**: Good visual quality but underestimates intensity
- **Diffusion-GAN**: Best overall but overestimates most extreme intensity

- Incorporating multiple meteorological variables and temporal dimensions
- Expand approach to other meteorological hazards and regions
- Identify the strengths (which regions/scenarios) of different models
- Develop an ensemble approach for targeted optimization and applications