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Sting jets

* Transient (few hours), mesoscale
(~50km spread) jets of air descending
from the tip of the hooked cloud
head in the frontal fracture regions of
some extratropical storms.

= Cancause damaging winds (and
especially gusts).

= Coined the sting at the end of the tail
by Browning (2004)" in his study of
the Great October storm of 1987.

= Since then large body of work
performed on modelling,
mechanisms and climatologies.

= First research aircraft flightinto a
sting jet storm led by Reading
scientists within DIAMET project:
Windstorm Friedhelm in 2011 (Baker
et al. 2013, Martinez- Alvarado et al.
2014, Vaughan et al. 2015).

= Term has now entered common
usage(?)

@ UnlverSIty of
Reading

Adapted from Laura Baker by Neil Hart.
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Conceptual model Reading
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Questions ot g

cyclones:

= storm track?

= deepening rate?

= low-level wind speeg”

= How will all of the above change in afuture warmer climate?



Climatedata BB v

= Extended winter seasons: Sept. to May inclusive.
= North Atlantic region only considered.

= Current climate reanalysis: ERA-Interim data (1979-2012): 6- hourly
output, T255 (~80 km grid spacing).
= Current and future climateintegrations:
= global model, ~60 km grid spacing in the midlatitudes, 6 hourly output,
13-year present-day (1996-2009) and 13-year future (~2100, under

the Intergovernmental Panel on Climate Change RCP 8.5 scenario)
climates.

= Same Met Office modelintegrations as usedto drive 12-kmand 1.5 km
grid-spacing regional climate integrations used in Kendon et al. (2014)
to predict heavier summer downpours under climate change.
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Precursor identification met hod® resdine

= Extratropical cyclone tracks diagnosed using TRACK algorithm (e.g.
yusing &35, smoothed to T42 resolution.

= Cyclones reaching their § ., within a specified North Atlantic domain analysed.
= Sting-jet precursors diagnosed assuming release of atmospheric instability
generates or strengthens sting jets ( ).

= Midtropospheric atmospheric instability to slantwise descent diagnosed using
downdraught slantwise CAPE (DSCAPE).

= Cyclones considered to have the potential to produce sting jets have a sufficiently
large contiguous region of DSCAPE exceeding 200 Jkg™ ' in their cloud head.

= |dentification of cloud head and ‘sufficient’ DSCAPE is threshold dependant, but
previous work ( ) has demonstrated skillin
identification of cyclones that generated sting jets in weather forecasts.



Example: ERICA IOP4 B Reading
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Classification of cyclones: ERA- [¥keaing

Non explosive Explosive (Ap
(24h)<-20 hPa)

No SJ precursor 3020 (55%) 676 (12%) 3696 (68%)
SJ precursor 1252 (23%) 499 (9%) 1751 (32%)
Totals 4272 (78%) 1175 (22%) 5447

22% of tracked cyclones are explosive.

32% of tracked cyclones have aSJ precursor.

29% of non-explosive cyclones have a SJ precursor.
42% of explosive cyclones have a SJ precursor.



Classification of cyclones ¥ Reading

ERA-I

No SJ precursor

SJ precursor

Non explosive Explosive (Ap

(24h)<-20hPa) Current ‘real

vs. simulated
3020 (55%) 676 (12%) climate

1252 (23%) 499 (9%)

Futureclimate

integration

No SJ precursor

SJ precursor

Current climate  Non explosive Explosive (Ap

integration (24h)<-20hPa)
No SJ precursor 834 (58%) 130 (9%)
SJ precursor 341 (24%) 127 (9%)

Non explosive Explosive (Ap

(24h)<-20hPa) Simulated

current vs.
639 (49%) 81 (6%) future climate

394 (30%) 185 (14%)




Track density maps: ERA-I P Reading
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Track density maps Reading
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Cyclone metrics: ERA-I

But, ERA-Interimistoo coarseto resolve SJs.

precursor identifies those cycloneswith
atmosphericinstability in the cloud head (more substantial cloud
head?)that is released by the model dynamics (not necessarily
physically) and/ or cyclones where potential temperature &
momentum surfaces are close to parallel (indicator of arapidly
developing fronts); these factors intensify the cold conveyor belt.
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Explosive cyclones
with SJ precursor
do not significantly
deepenfasterin
MSLP thanthose
without.

But, cyclones with
SJ precursors
have faster
windspeeds and
greater ¢,

12




0.06
0.05|
0.04 |

E’moa.
0.02

0.01

0.12

— hon-5) storms
—— §) storms

0.10+

All Storms

0.08}
S 0.06|
0.04|

0.02+

0.00

10 20 30 40 50 60
Amslp (hPa/24h)

Explosively

| only

Explosively
Developing

0.00
10

2;.') 3I0 40 5I0 60
max. windspeed (m/s)

70

Current climate integration

Cyclone metrics ...
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Current and future climate results
both similar to ERA-I. Storms with
and without SJ precursors have
significantly different deepening
Developing only rates and windspeeds, but current
and future climate data is not
significantly different.
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wind risk: current climate
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wind risk: current vs. future climate
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. @ Umver5|ty of
Conclusions Reading
= Adiagnostic for sting jet precursors has been applied to tracked North Atlantic

cyclonesin 13-year current and future climate integrations and compared to published
results using the ERA-Interim reanalysis (1979-2011).

= All 3datasets:

= for explosively developing cyclones, the low-level maximum windspeed and §is
distributed towards much higher values for those cyclones with SJ precursors.

» storm trackis more southerly and more zonal for explosive cyclones with SJ
precursors comparedto track for those without precursors.

= cyclones with SJ precursors become more dominant as the windspeed threshold is
increased.

» Proportionof storms with SJ precursors increases from 33% in the current climate
(32% for ERA-1) to 45% for the future climate; for explosively developing storms the
increaseis from9to 14%.

= # storms with winds exceeding 30 ms-"increases in the future (comparedto current)
climate integrations for the British Isles and European regions.

" Inreal systems (or sting-jet resolving weather forecasts) the sting jet is likely to be an
additional cause of strong cold-sector winds, either directly or through enhancement
of the cold conveyor belt. 16
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