

# Sting jet storms in a future warmer climate



#### Suzanne Gray,

Oscar Martínez-Alvarado, Neil Hart and Peter Clark with thanks to Kevin Hodges and Malcolm Roberts

Copyright University of Reading

LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT



# Sting jets

- Transient (few hours), mesoscale (~50km spread) jets of air descending from the tip of the hooked cloud head in the frontal fracture regions of some extratropical storms.
- Can cause damaging winds (and especially gusts).
- Coined 'the sting at the end of the tail by Browning (2004)' in his study of the Great October storm of 1987.
- Since then large body of work performed on modelling, mechanisms and climatologies.
- First research aircraft flight into a sting jet storm led by Reading scientists within DIAMET project: Windstorm Friedhelm in 2011 (Baker et al. 2013, Martínez-Alvarado et al. 2014, Vaughan et al. 2015).
- Term has now entered common usage(?)



Adapted from Laura Baker by Neil Hart.

### **Conceptual model**





# Questions

- Sting jet wind risk by Hart, Gray and Clark U. Climate, early online) Sting-jet windstorms over the North Atlantic. Climate, early online) to extreme wind risk by Hart, Gray and Cark U. Climate, early online) sting-jet cyclones to strong wind events in

How will all of the above change in a future warmer climate?

**Iniversity** of

ion sting-jet

ading

# **Climatedata**



- Extended winter seasons: Sept. to May inclusive.
- North Atlantic region only considered.
- Current climate reanalysis: ERA-Interim data (1979-2012): 6-hourly output, T255 (~80 km grid spacing).
- Current and future climate integrations:
  - global model, ~60 km grid spacing in the midlatitudes, 6 hourly output, 13-year present-day (1996–2009) and 13-year future (~2100, under the Intergovernmental Panel on Climate Change RCP 8.5 scenario) climates.
  - Same Met Office model integrations as used to drive 12-km and 1.5 km grid-spacing regional climate integrations used in Kendon et al. (2014) to predict heavier summer downpours under climate change.

# Precursor identification method Reading

- Extratropical cyclone tracks diagnosed using TRACK algorithm (e.g. Hodges and Hoskins, 2002) using  $\xi_{850}$  smoothed to T42 resolution.
- Cyclones reaching their  $\xi_{max}$  within a specified North Atlantic domain analysed.
- Sting-jet precursors diagnosed assuming release of atmospheric instability generates or strengthens sting jets (Gray et al., 2011).
- Midtropospheric atmospheric instability to slantwise descent diagnosed using downdraught slantwise CAPE (DSCAPE).
- Cyclones considered to have the potential to produce sting jets have a sufficiently large contiguous region of DSCAPE exceeding 200 J kg<sup>-1</sup> in their cloud head.
- Identification of cloud head and 'sufficient' DSCAPE is threshold dependant, but previous work (Martínez-Alvarado et al., 2011) has demonstrated skill in identification of cyclones that generated sting jets in weather forecasts.

#### **Example: ERICA IOP4**



#### 1989-01-03 00:00 SJ Precursor Points: 23



7

# Classification of cyclones: ERA-

|                 | Non explosive | Explosive (∆p<br>(24h)<-20 hPa) | Totals     |
|-----------------|---------------|---------------------------------|------------|
| No SJ precursor | 3020 (55%)    | 676 (12%)                       | 3696 (68%) |
| SJ precursor    | 1252 (23%)    | 499 (9%)                        | 1751 (32%) |
| Totals          | 4272 (78%)    | 1175 (22%)                      | 5447       |

22% of tracked cyclones are explosive.
32% of tracked cyclones have a SJ precursor.
29% of non-explosive cyclones have a SJ precursor.
42% of explosive cyclones have a SJ precursor.

| Classifi                    | University of <b>Reading</b> |                                    |                    |                               |                                 |
|-----------------------------|------------------------------|------------------------------------|--------------------|-------------------------------|---------------------------------|
| ERA-I                       | Non explosiv                 | ve Explosive (∆p<br>(24h)<-20 hPa) |                    |                               | Current 'real'<br>vs. simulated |
| No SJ precursor             | 3020 (55%)                   | ) 676 (12%)                        |                    |                               | climate                         |
| SJ precursor                | 1252 (23%)                   | ) 499 (9%)                         |                    | _                             |                                 |
|                             |                              | Current climation                  | ate N              | on explosive                  | Explosive (∆p<br>(24h)<-20 hPa) |
|                             |                              | No SJ precur                       | sor                | 834 (58%)                     | 130 (9%)                        |
|                             |                              | SJ precursor                       |                    | 341 (24%)                     | 127 (9%)                        |
| Fut ure climate integration | Non explosiv                 | re Explos<br>(24h)<-               | ive (∆p<br>20 hPa) |                               | Simulated                       |
| No SJ precursor             | 639 (49%)                    | 81 (6%)                            |                    | current vs.<br>future climate |                                 |
| SJ precursor                | 394 (30%)                    | 185 (*                             | 14%)               |                               | 9                               |

### Track density maps: ERA-I

65°N

55°N

45°N

35°N

D





Cyclones with sting-jet precursors follow a more southerly storm track compared to those without these precursors.



# Track density maps





# Cyclone metrics: ERA-I

#### But, ERA-Interim is too coarse to resolve SJs.

Interpretation: precursor identifies those cyclones with atmospheric instability in the cloud head (more substantial cloud head?) that is released by the model dynamics (not necessarily physically) and/or cyclones where potential temperature & momentum surfaces are close to parallel (indicator of a rapidly developing fronts); these factors intensify the cold conveyor belt.

Explosive cyclones with SJ precursor do not significantly deepen faster in MSLP than those without.







### Wind risk: current climate





14

### Wind risk: current vs. fut ure climate



# Conclusions



- A diagnostic for sting jet precursors has been applied to tracked North Atlantic cyclones in 13-year current and future climate integrations and compared to published results using the ERA-Interim reanalysis (1979-2011).
- All 3 dat aset s:
  - for explosively developing cyclones, the low-level maximum windspeed and ξ is distributed towards much higher values for those cyclones with SJ precursors.
  - storm track is more southerly and more zonal for explosive cyclones with SJ precursors compared to track for those without precursors.
  - cyclones with SJ precursors become more dominant as the windspeed threshold is increased.
- Proportion of storms with SJ precursors increases from 33% in the current climate (32% for ERA-I) to 45% for the future climate; for explosively developing storms the increase is from 9 to 14%.
- # storms with winds exceeding 30 ms<sup>-1</sup> increases in the future (compared to current) climate integrations for the British Isles and European regions.
- In real systems (or sting-jet resolving weather forecasts) the sting jet is likely to be an additional cause of strong cold-sector winds, either directly or through enhancement of the cold conveyor belt.