POTENTIAL WIND LOSS EVENTS OVER THE IBERIAN PENINSULA: RANKING, MULTI-DECADAL VARIABILITY AND SELECTED CASE STUDIES

Alexandre M. Ramos¹, Melanie K. Karremann², Margarida L. R. Liberato¹,³, Paulina Ordóñez⁴, Joaquim G. Pinto², Ricardo M. Trigo¹

(1) IDL, Universidade de Lisboa, Lisboa, Portugal
(2) Institute of Meteorology and Climate Research (IMK-TRO), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
(3) UTAD, Quinta de Prados, Vila Real, Portugal
(4) Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City, Mexico

6th European Windstorms Workshop, Reading, UK
22 June 2017
1. Motivation

- Recent severe windstorms caused substantial economic losses and fatalities over the Iberian Peninsula including **Klaus** (January 2009, Liberato et al., 2011), **Xynthia** (February 2010, Liberato et al., 2013), **Gong** (January 2013, Liberato, 2014) and **Stephanie** (2014, Ferreira et al., 2014). Winter 13/14 – storm surges damages in harbors and costal areas.

- **The objective** is to study large-scale atmospheric conditions and cyclone tracks during the top-100 **potential wind losses events** over **Iberia Peninsula**.

Example of Klaus

Liberato et al., 2011
2. Methods and Dataset

Dataset

- Reanalysis from NCEP-NCAR (1948 to 2015) - T62 resolution 1.875º.
- Daily maxima of the 4 x 6-hourly instantaneous 10m-wind data
- 6-hourly mean sea level pressure

Potential wind loss (MI)

\[
MI(\text{area}) = \sum_{i=1}^{N} \sum_{j=1}^{M} \left(\frac{v_{ij}}{v_{ij}^{98}} \right)^3 \cdot I(v_{ij}, v_{ij}^{98})
\]

\[
I(a, b) = \begin{cases}
0 & a < b \\
1 & a > b
\end{cases}
\]

- \(v_{ij}\) = daily maximum wind speed at grid point \(ij\)
- \(v_{ij}^{98}\) = 98th percentile calculated for the winter 1979-2011 at grid point \(ij\)

2. Methods and Dataset

Storm detecting and tracking scheme

- Detecting and tracking algorithm first developed by Murray & Simmonds (1991) and adapted by Pinto et al. (2005).

Storms associated with potential loss over the Iberian Peninsula

Selected domain

- For the potential wind loss in the Iberian Peninsula (MI) ranking, the cyclone tracks that are located on the event day within 30°N-65°N, 30°W-20°E and they are preliminary assigned to the event.

- These cyclone tracks and associated windstorm footprints are analyzed and the cyclone which matches best with the windstorm footprint (timing and overlap) is selected as potentially responsible for the MI.

Karremann et al. 2016, ASL
3. Results – Top #1 Event

Stephanie (9-2-2014)
3. Results – Cyclones Pmin position TOP #100

Position of minimum pressure of identified cyclones responsible for potential wind losses at the top #100 events.

- Iberia – cyclones crossing the IP (31 events);
- West - cyclones crossing from SW to NE (11 events);
- North - cyclones crossing from W to E in zonal path (28 events)
- Hybrid - characterized by a co-occurrence of a high and a low pressure centre on opposite sides of Iberia (30 events)
3. Results – Group Iberia (31 events)

Top 6: Klaus (23-1-2009)
Top 9: Xynthia (27-2-2010)
Top 7: Gong (19-1-2013)
Top 1: Stephanie (9-2-2014)

Position of minimum pressure (yellow dot) and cyclone track during the event day (red)

Karremann et al. 2016
3. Results – Group North (28 events)

Position of minimum pressure (yellow dot) and cyclone track during the event day (red)

Karremann et al. 2016
3. Results – Group West (11 events)

Position of minimum pressure (yellow dot) and cyclone track during the event day (red)

Karremann et al. 2016
3. Results – Group Hybrid (30 events)

This group is usually characterized by a co-occurrence of a high and a low pressure centre on opposite sides of Iberia, leading to a pronounced MSLP gradient and strong winds over the region.

Karremann et al. 2016
3. Results - Number of events per winter

Multi-decadal variability in the number of events (10 year running mean)

Peak in recent years is quite prominent in the top 20 cases.

Karremann et al. 2016
4. Historical case studies

The storm of November 1724

The observations were made in Lisbon between 1 November 1724 and 11 January 1725. Pressure and temperature were registered twice a day, wind force only one value per day.

Wind Index: 1 gentle breeze; 4 violent

To put into context, comparing with the largest decreases of atmospheric pressure in 24 h in Lisbon during the 1863–2006 period it was the second largest decrease being the first one the 28 November 1879.

The first meteorological measurements in the Iberian Peninsula
Dominguez-Castro et al., 2013, Climatic Change
4. Historical case studies

The storm of November 1724 (Damages)

Locations affected in Portugal and in Madeira

Tropical cyclone or extratropical?

Trajectory of hurricane Vince according to Franklin (2006) and 1842 storm trajectory estimation by Vaquero et al. (2008)

The first meteorological measurements in the Iberian Peninsula

Dominguez-Castro et al., 2013, Climatic Change
4. Historical case studies

The storm of 15th February 1941

Property damage

Maximum wind speed (km/h)

<table>
<thead>
<tr>
<th>Locations in Portugal</th>
<th>Maximum wind speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lisbon</td>
<td>127</td>
</tr>
<tr>
<td>Praia da Rocha (Algarve)</td>
<td>130</td>
</tr>
<tr>
<td>Portimão (Algarve)</td>
<td>150</td>
</tr>
<tr>
<td>Santiago do Cacem (South of Lisbon)</td>
<td>119</td>
</tr>
<tr>
<td>Penhas Douradas (Serra Estrela)</td>
<td>148</td>
</tr>
<tr>
<td>Coimbra</td>
<td>133</td>
</tr>
<tr>
<td>Guarda</td>
<td>126</td>
</tr>
<tr>
<td>Porto</td>
<td>130</td>
</tr>
<tr>
<td>San Sebastian</td>
<td>180</td>
</tr>
</tbody>
</table>

4. Historical case studies

The storm of 15th February 1941

Forestry damage

- Caminha and Espôrnone: devastated whole forests.
- Coimbra: 27 hectares of unique primal forest blown down and 1000 great cedars lost.
- Gaia: 40,000 trees lost.
- Praenca a Nova: 300,000 trees blown down.
- Alcoentra: blocked for three days by numerous eucalyptus trees on the roads.
- Tremões: lost 80% of olive trees of an estimated 100,000 specimens.
- Lisbon: Botanical Gardens, hundred of destroyed trees.
- Prazeres (Lisbon cemetery): 300 large cypresses fell in the cemetery.
- Évora: 10,000 eucalyptus trees and 20,000 pines blown down in the Mata Nacional de Vértudes.
- Funchal: 500 fruit and olive trees blown down.
- Guarteira: 150 olive trees.
- Moncarapacho, Pechão, Fuzeta and Tavira: thousands of olive trees.

Human Fatalities IP

The windstorm occurred through the afternoon into the early evening on a Saturday, without proper warning and many people were outside in the storm. A total of at least 130 people are known to have died in the storm.

4. Historical case studies

The storm of 15th February 1941

SLP and 6-hourly precipitation from 20CR
5. Summary and Conclusions

- We characterize the large-scale atmospheric conditions and cyclone tracks during the top-100 potential losses over Iberia associated with wind events.

- Based on 65 years of reanalysis data, events are classified into four groups.

- Generally, ‘Iberia’ events are the most frequent (31–45% for top-100 vs top-20), while ‘West’ events are rare (10–12%).

- This study documents that damaging wind storms over Iberia are not rare events, and their frequency of occurrence undergoes multi-decadal variability.

- Importance of studying more historical cases in the context of computing the return period of the extreme wind storms.
6. Future Work

- Newspaper sources can be an useful tool in finding the impacts of this wind storms historical cases.
- A good example of newspapers sources, can be found in historical floods and landslide in Portugal that are already geo-reference between 1865 to 2015 (DISASTER and FORLAND PROJECTS).

<table>
<thead>
<tr>
<th></th>
<th>1865 to 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floods</td>
<td>1018</td>
</tr>
<tr>
<td>Landslides</td>
<td>237</td>
</tr>
<tr>
<td>Total</td>
<td>1255</td>
</tr>
<tr>
<td>Fatalities</td>
<td></td>
</tr>
<tr>
<td>Injured</td>
<td>479</td>
</tr>
<tr>
<td>Evacuated</td>
<td>14088</td>
</tr>
<tr>
<td>Homeless</td>
<td>40687</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1865 - 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flood Case</td>
<td></td>
</tr>
<tr>
<td>Nuts II</td>
<td></td>
</tr>
<tr>
<td>Main Rivers</td>
<td></td>
</tr>
<tr>
<td>1865 - 2015</td>
<td></td>
</tr>
<tr>
<td>Flood Case</td>
<td></td>
</tr>
<tr>
<td>Nuts II</td>
<td></td>
</tr>
<tr>
<td>Main Rivers</td>
<td></td>
</tr>
</tbody>
</table>

1865 to 2015 Fatalities injured Evacuated Homeless
Floods 1018 479 14088 40687
Landslides 237 434 823 1620
Total 1255 913 14911 42307
• This work was funded by FEDER funds through the COMPETE (Programa Operacional Factores de Competitividade) Programme and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) through project STORMEx FCOMP-01-0124-FEDER-019524 (PTDC/AAC-CLI/121339/2010).

• Alexandre M. Ramos was supported through a postdoctoral grant (SFRH/BPD/84328/2012) from the FCT.

• Financial funding for travel was possible through FCT project UID/GEO/50019/2013 - Instituto Dom Luiz