Modelling serial clustering of European winter windstorms

Michael A. Walz1, DJ Befort1, NO Kirchner-Bossi1,2, U Ulbrich3 and GC Leckebusch1

1University of Birmingham, School of Geography, Earth and Environmental Sciences
2School of Civil Engineering and Geosciences, Newcastle University
3Institute for Meteorology, Freie Universität Berlin,
Contents

1. Serial Clustering and Motivation
2. Data and Statistical Model
3. Results
 I. Identified large scale drivers
 II. Performance of the statistical model
 III. “Map of drivers” – Spatial distribution of drivers
4. Summary/Outlook
Contents

1. Serial Clustering and Motivation
2. Data and Statistical Model
3. Results
 I. Identified large scale drivers
 II. Performance of the statistical model
 III. “Map of drivers” – Spatial distribution of drivers
4. Summary/Outlook
Serial Clustering of annual windstorm counts

- Key component in understanding inter-annual variability of windstorms
 → Year to year variability

- Common statistical definition:
 → Deviation of windstorm count time series from a Poisson distribution

- How well is a statistical model able to reproduce serial clustering?
 → Application in the actuarial industry
Motivation

Trying to answer two questions:

For a particular region, what are the essential large scale drivers for serial clustering?

Where is the main area of action for the leading large scale drivers with regard to inter-annual variability on grid cell level?

Impact perspective

Statistical model

+ SSTs, QBO...

Physical perspective

Image: Courtesy of NOAA
Definition of Serial Clustering

Quantification of serial clustering through Dispersion score D (Mailier et al., 2006)

$$D = \frac{\sigma^2}{\mu} - 1$$

(σ^2 storm count variance, μ storm count mean)

Poisson distribution:

- $D < 0$ under-dispersed
- $D = 0$
- $D > 0$ over-dispersed

Clustered time series

Neg. Binomial

Mean = 14.73, Variance = 43.03

Counts

Index
Contents

1. Serial Clustering and Motivation
2. *Data and Statistical Model*
3. Results
 I. Identified large scale drivers
 II. Performance of the statistical model
 III. “Map of drivers” – Spatial distribution of drivers
4. Summary/Outlook
Windstorms and large scale drivers

- Objective windstorm tracking algorithm (Kruschke, 2015 and Leckebusch et al. 2008)
- Based on exceedance of 98th percentile
- Tracked in ECMWF ERA 20C (1901-2008)
- Counts per DJF per region
- All drivers were computed using ERA 20C except for QBO (Broennimann et al. 2007)
Modelling serial clustering

Inter-annual variability for a region

1. Serial Clustering statistic D

2. Active/Inactive season (AS/IAS) $\mu_r \pm \sigma_r$
Figure: Regions for the 7 different models
Walz et al., 2017 submitted to IJOC

- 7 Regions based on **insurance related regions**
- Potential pool of 20 large-scale drivers

<table>
<thead>
<tr>
<th>Index Name</th>
<th>Long name</th>
</tr>
</thead>
<tbody>
<tr>
<td>QBO30</td>
<td>Quasi-Biennial Oscillation (30 hPa)</td>
</tr>
<tr>
<td>QBO70</td>
<td>Quasi-Biennial Oscillation (70 hPa)</td>
</tr>
<tr>
<td>AMO</td>
<td>Atlantic Meridional Oscillation</td>
</tr>
<tr>
<td>HIS</td>
<td>Horse-Shoe-Index</td>
</tr>
<tr>
<td>SSTS</td>
<td>Southern Box of HSI</td>
</tr>
<tr>
<td>Tdif.Nam</td>
<td>Temperature difference North America – West Atlantic</td>
</tr>
<tr>
<td>W.Atl T</td>
<td>West Atlantic SST</td>
</tr>
<tr>
<td>NINO3.4</td>
<td>Nino 3.4 index</td>
</tr>
<tr>
<td>NAO.Is.Li</td>
<td>Station Based NAO index</td>
</tr>
<tr>
<td>PDO</td>
<td>Pacific Decadal Oscillation</td>
</tr>
<tr>
<td>West Pac</td>
<td>West Pacific Pattern (EOF)</td>
</tr>
<tr>
<td>PNA</td>
<td>Pacific-North American pattern (EOF)</td>
</tr>
<tr>
<td>EOF10</td>
<td>West Pacific pattern II (EOF)</td>
</tr>
<tr>
<td>EA.WR</td>
<td>East Atlantic/West Russia pattern (EOF)</td>
</tr>
<tr>
<td>EA</td>
<td>East Atlantic pattern (EOF)</td>
</tr>
<tr>
<td>SCA</td>
<td>Scandinavian Pattern (EOF)</td>
</tr>
<tr>
<td>TNH</td>
<td>Tropical Northern hemisphere (EOF)</td>
</tr>
<tr>
<td>EP.NP</td>
<td>East Pacific/North Pacific pattern (EOF)</td>
</tr>
<tr>
<td>POL</td>
<td>Polar index (POL)</td>
</tr>
<tr>
<td>Sea Ice</td>
<td>Northern Hemispheric sea ice cover</td>
</tr>
</tbody>
</table>
Poisson GLM: European regions

- Stepwise AIC approach for driver selection for every region
- χ^2 –test to test for significance of drivers
- Poisson GLM:

$$y(t) \sim \text{Poisson}(\lambda(t))$$

$$\log(\lambda(t)) = \beta_0 + \beta_1 x_1(t) + \sum_{i=2}^{N} \beta_i x_i(t)$$

Annual storm counts

- Linear time trend
- Selected driver time series
5 predominant drivers identified by AIC are examined on grid cell level

- Poisson model for 1x1 degree grid cell
- Identifying the driver that explains most variability per grid cell

→ Spatial distribution of most important drivers of inter-annual variability
Contents

1. Serial Clustering and Motivation
2. Data and Statistical Model
3. Results
 I. Identified large scale drivers
 II. Performance of the statistical model
 III. “Map of drivers” – Spatial distribution of drivers
4. Summary/Outlook
Identified large scale drivers

Table: Identified large scale drivers per region and observed and modelled Dispersion score

<table>
<thead>
<tr>
<th>Selected large scale drivers</th>
<th>BI Region 1</th>
<th>C.Eur Region 2</th>
<th>BI/C.Eur Region 3</th>
<th>Scand Region 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAO stat</td>
<td>SCA</td>
<td>SCA</td>
<td>SCA</td>
<td>SCA</td>
</tr>
<tr>
<td>SCA Tdif.Nam</td>
<td>Tdif.Nam</td>
<td>NAO stat</td>
<td>West Atl. T</td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>EA POL</td>
<td>QBO30</td>
<td>Tdif.Nam</td>
<td>W.Atl.T</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EA</td>
<td>EOF 10</td>
<td>West Pac</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EA.WR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dispersion score D model</td>
<td>1.14</td>
<td>0.12</td>
<td>0.60</td>
<td>1.54</td>
</tr>
<tr>
<td>Dispersion score D observed</td>
<td>1.94</td>
<td>0.85</td>
<td>1.35</td>
<td>2.67</td>
</tr>
</tbody>
</table>

- SCA, NAO and EA appear as key drivers
- Tdif.Nam (Wild et al., 2016) and W.Atl.T also explain variance
- Modelled Dispersion score generally too small
Qualitative performance of statistical model

Figure: Windstorm frequency per year for the British Isles from 1901-2008. Circles indicate active/inactive seasons. Walz et al., 2017 submitted to IJOC

- Significant trend in observations (cf. Befort et al., 2016)
- Satisfactorily performance of predicting annual storm count
Quantitative performance of the Poisson model

Table: Cross validated skill scores for the developed statistical model

<table>
<thead>
<tr>
<th>Region</th>
<th>Hit rate active</th>
<th>Hit rate inactive</th>
<th>D bias Model-Obs</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>British Isles</td>
<td>78.9%</td>
<td>61.1%</td>
<td>-0.80</td>
<td>0.84</td>
</tr>
<tr>
<td>Central Europe</td>
<td>71.1%</td>
<td>50.0%</td>
<td>-0.73</td>
<td>0.72</td>
</tr>
<tr>
<td>BI+C.Europe</td>
<td>71.1%</td>
<td>65.5%</td>
<td>-0.75</td>
<td>0.81</td>
</tr>
<tr>
<td>Scandinavia</td>
<td>75.0%</td>
<td>64.3%</td>
<td>-1.13</td>
<td>0.82</td>
</tr>
</tbody>
</table>

- Underestimation of $D \rightarrow$ underestimation of inter-annual variability by model
Large scale driver on grid cell level – Map of drivers

Figure: Left: Most dominant pattern explaining the inter-annual variability of windstorm. Right: Explained deviance of the Poisson regression. Walz et al., 2017 submitted to IJOC
Large scale driver on grid cell level

Figure: Significant Poisson GLM regression coefficients for the dominant selected large scale drivers

Walz et al., 2017 submitted to IJOC

- Prominent NAO pattern
- SCA as main driver for Central Europe
- POL for Scandinavia
Contents

1. Serial Clustering and Motivation
2. Data and Statistical Model
3. Results
 I. Identified large scale drivers
 II. Performance of the statistical model
 III. “Map of drivers” – Spatial distribution of drivers
4. Summary/Outlook
Summary/Outlook

- Statistical model to estimate seasonal clustering and also active/inactive seasons
- Identified drivers entail SCA, NAO, W.Atl.T
- “Map of drivers”:
 - SCA is dominant driver for windstorms in Central Europe
 - NAO for Brit. Isles and NA
- Statistical model with time lag → SON indices
- Interactions between drivers in statistical model
References

