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Open questions on SJ dynamics ®reading

An area of general descent and acceleration

* Anairstream descending out of the cloud head is associated /”
with frontolysis connected with the frontal-fracture region
(Schultz and Sienkiewicz (2013)). 0

* Dynamical quasi-geostrophic forcing can be largely responsible
forinitiating the slantwise descent (Coronel et al. (2016))

Cold
* High wind speed values are consequence of the descent of air in

a low-friction environment (Slater et al. (2016))

Mesoscale mechanisms enhancing thejet strength

* The release of conditional symmetric instability (CSI), among
with other atmospheric instabilities, is a plausible candidate for
the origin of banding at cloud- head tip and for the generation of
descending strong winds

(Baker et al. (2014), Martinez- Alvarado et al. (2014), Gray et al.
(2011) among the others).

between thesetwo aspectsto clarify SJ dynamics

Here we analyse the evolution of mesoscale instabilities along the SJ in Windst orm Tini




Windstorm Tini Reading

S,

12 February 2014: Shapiro-Keyser
extratropical cyclone passes over UK and
Ireland with well defined bent-back front

and frontal fracture

* Deepandfast cyclogenesis
e Ap~-30hPain 15 hours
e Surface gusts over 100 mphin Wales

THOMAS SCARROTT




Observations: hints of a SJ?  Breading

* Banding at cloud-head tip suggests slantwise circulations and conditional symmetric
instability (CSI) release

* These features are shownalso in our simulations

e  Met UMvn8.2; horizontalresolution: 0.11°; vertical resolution: 70 levels (UKV)
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®* Meteosat infrared satellite image of ¢ Simulated-satellite image (using brightness
windstorm Tiniat 06 UTC cloud-top temperature, K) 4
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Observations: hints of a SJ? Reading
* banding at cloud-headtip suggests slantwise circulations and conditional symmetric
instability (CSI) release

e These features are shown also in our simulations
« Met UMvnS8.2; horizontal resolution: 0.11°; vertical resolution: 70 levels (UKV)
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®  Meteosatinfraredsatellite image of windstorm *  Simulated-satellite image (using brightness
Tiniat 06 UTC cloud-top temperature, K)

e Also: MST Radar at Aberystwythrecords a low-level wind maximum just after the s
passage of the primary cold front (not shown)



An additional airstream B

 07UTC-wind speedand6,,at 850 hPa, cloud cover at 700 hPa
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Wind Speed (ms ')

* Wind speed maximum in the frontal fracture area, where the moist
isentropes spread out



A descending airstream @a'a";“':ag

Cross section along the frontal fracture shows:

* Inan area of moderate and generalised descent there
are folds in wet- bulb potential temperature

* Indication of a moist-adiabatic descent of an actual
airstream

* Wind speed stronger in the low-level maximum than
above
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A distinct alrstream B8 Reading

SJ CCB 12 February 2014 3:00 UTC
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* Lagrangiantrajectory analysis onthe identified SJ and CCB: trajectories from 22 UTC on
11 Febto10UTCon12Feb
» SJis adifferent airmass withrespect to CCB, undergoingto its own evolution
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Instabilities on trajs Reading
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* Large portion of trajectories unstable to CSl before jet starts descending:
consistent with previous studies
10



Instabilities on trajs Reading
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* Large portion of trajectories unstable to CSl before jet starts descending:
consistent with previous studies

 CSlneeds saturated environment to be released so it cannot be releasedout of 11
the cloud



Instabilities on trajs Reading
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e During the descent rapid growth and subsequent drop of dry symmetric instability (S1)
» Diabatic processes are changing PV on the trajectories

 The release of a dry instability can explain why the SJ continues to accelerate even *?
when not saturated



Instabilities on trajs Reading
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* At the same time a large portion of the airstream gets also unstable to Il
e Vertical component of absolute vorticity gets negative

Proportions (%)
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Instabilities on trajs Reading
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e The situationis definitely more complex thanjust CSlrelease

* Very little conditionalinstability
14



Instabilities on trajs Reading
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e The parcels that get unstable to CSl at first then get unstable to dry mesoscale
instabilities

 Single process of destabilisation and subsequent release of mesoscale instability 15
ontheairstream
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Evolution of vorticity B2 Reading
* The SJ gets more and more unstable while exiting from the cloud head, up to the point

that the vertical component of absolute vorticity becomes negative (condition for Il)

« How does the jet get to this unstable condition?
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Absolute vorticity (1074 s ') computedat 700 hPaat 05 UTC



Evolution of vorticity — B
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Evolution of vorticity — B

05 UTC —700 hPa




Evolution of frontogenesis By

* We showed mesoscale instabilities evolving onthe airstream
* What isthe associated frontogenesis pattern?

* Thereismore structurethaninthe results of Schultz and Sienkiewicz (2013)
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Petterssen Frontogenesis (Kler_rg\)‘1 s 1) computedat 700 hPaat 05 UTC
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Evolution of frontogenesis By

 Evident vertical banding, consequence of the distortion of theta gradient operated by
the slantwise motions

* SJislocatedinafrontogenetic regionfor most of its descent
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Comparison with global model ®gu

* Globalsimulation of Tiniona ~25km horizontal grid spacing domain

25km 12km

18°wW 12°wW 6°W 0°

i i i
30 36 42 48 54 60 30 36 42 48 54 60

Wind Speed (ms™!) Wind Speed (ms!)
WCB ~42m/s WCB ~48 m/s
SJ)~45m/s SJ)~60m/s

* Windspeedand wet bulb potential temperature at 850 hPa (07 UTC)
* The broadstructure is the same but wind weakeningin SJ areais evident



Comparison with global model ®gssm
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e High- and mid-troposphere wind fields are similar with both resolutions

In the 25km:

* Significant weakening of wind speed at low levels in the frontal fracture area
* Descending motions much weaker and no foldingin 6,

22



Comparison with global model ®gigh

25km 12km
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* Same broadstructure in frontogenesis, smaller magnitude in the 25km
e Patternclosely resembles Schultz and Sienkiewicz(2013)
* Nofiner-scale structure

23



Comparlson Wlth gIObaI mOdeI University of

Reading
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* Mesoscale bandings at the tip of the cloud head are absent
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Coarser resolution
Reading
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* The build-up andrelease of mesoscale instabilities driving the SJ descent in the hi-res
simulationis almost absent ina coarser-resolution one, resulting in weaker winds 25




Summary Reading

* Dynamics of SJ is stilldebated, particularly on the
relative importance of larger-scale cyclone
dynamics and mesoscale instabilities

e Simulations of windstorm Tinishow the presence of
aSJ as adistinct airstream

e This airstream becomes at first largely unstable to
CSlandthen also to other dry mesoscale instabilities
driving its descent.

 The same destabilisation does not occurina
coarser-resolution simulation, resulting in a weaker
wind jet in the frontolytic region.

e This dynamics does not contradict alarge-scale
paradigm connecting strong winds in that area with
the frontal fracture dynamics. Rather, the analysis
reveals the synergy between cyclone dynamics and

mesoscale instabilities in SJ formation. -




And now? Reading

* Theresults of this case study suggest that the SJ undergoes to a process of
destabilisation that enhances its descent and acceleration, adding up to the strong
winds already generated by the larger-scale cyclone dynamics.

We need now to identify the processes driving these dynamics to get a complete

picture of the SJ.

To put it simply, the research focus has to widen from /1owa SJ forms and evolves to
when, whereand w/hyit evolves and to include the effects of future climate change.
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Thanks for the attention!

SJ) CCB 12 February 2014 0:00 UTC
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e System-relative reference frame
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