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- M Klaus (23 — 25t January 2009)

Met Office, North Atlantic European Model
(EURO4): ~4.4km horizontal resolution
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Motivation ez =
- Insurance industry benefit from having the )
most accurate representation of the o
windstorm footprint at the earliest LR ?
opportunity ’ <7
» Prompt identification of the most affected s i
areas ; i
« Timely estimation of the associated losses .
* Improve knowledge of vulnerability when Windstorm Footprint: Maximum 3 second
combined with historical loss data wind gust speed to occur in each location over

the 72 hour lifespan of the storm

www.metoffice.gov.uk © Crown Copyright 2019, Met Office



« Investigate different methods for estimating the windstorm footprint
using observations and numerical weather prediction (NWP) models

« Observations: relatively accurate but spatially heterogeneous
« Meteorological NWP models: spatially complete but biased

« How can we effectively combine these two sources of information?
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- AY/ Observed (left) and modelled (right) footprints for
windstorm Klaus (23 — 25t January 2009)

Wind gust speed (ms™)
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Observations: Wind gust speeds taken NWP Model: Met Office, North Atlantic
from a station network of ~1500 European Model (EURO4), ~4.4km
stations across Europe horizontal resolution
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Method

i 7

Compare how well three different approaches for representing a single
windstorm footprint are able to predict observations at locations not included in

model fitting

1. Using observations only: a spatial geostatistical model, kriged predictions
Using meteorological NWP model only: interpolate to the prediction location

Combined approach: using the statistical recalibration approach of Youngman and
Stephenson (2019)

Youngman, B. D. and Stephenson, D. B. (2019). Spatial inference for hazard event
intensities using imperfect observation and simulation data. Preprint available from
http://empslocal.ex.ac.uk/people/staff/by223/youngman-stephenson__recalibration.pdf
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Semivariance

1. Geostatistical model for observations

www.metoffice.gov.uk

Distance (km)

For each pair of locations, ém'piricalily calc'ul-é'te
the semivariance (a measure of dissimilarity),
plot against separation distance

Calculate the average semivariance for
separation distance bins (here every 200km)

Fit a parametric covariance function to these
points — here the Gaussian model

This model can be used to predict at unobserved

locations, based on a weighted average of
neighbouring locations (ordinary kriging)
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Wind gust speed (ms™")

1. Geostatistical model for observations
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Kriged observation footprint (4km
resolution) for windstorm Klaus
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2. Interpolating NWP model

W * Use bilinear interpolation to non-

: parametrically estimate wind gust speed at any
desired location, based on wind gust speeds at
surrounding locations

» Usethe interp-surface() functionin R

EURO4 footprint for windstorm
Klaus (4km resolution)

Wind gust speed (ms™")
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- M = Unobservable truth + Measurement error (1)
Unobservable truth = NWP model + Model discrepancy (2)

3. Recalibration

* Model such that the spatial mean process is a function of NWP model, and
known model parameterisations (e.g. orography)

* Quantifying the difference in spatial structures and measurement error

Spatial structure
adjustment and
measurement

~ NWP model +
error

« Use this model to predict Unobservable truth at a given location using its joint distribution
with derived from equation (1)
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s NWP model Klaus
footprint (original)
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3. Recalibration

Wind gust speed (ms™')
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Results: Kiaus

 10-fold cross validation

(~140 observations per

validation sample)

* For each of the 10 cross
validations, calculate the
Root Mean Squared
Error (RMSE)

—_—

For all wind gust speeds
2. For observed wind gust
speed > 25ms-!, most
relevant for insured loss
estimation

Predicted wind gust (approach 1)

www.metoffice.gov.uk

Which approach gives best predictions of observations not
included in model fitting?

1. Kriged Observations

3. Recalibrated footprint
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2. Interpolated NWP model
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Results

RMSE for all 10-fold cross
validations for Klaus

Mean RMSE for Klaus

Mean RMSE for 20 storms
(2007-2019)

For all 20 storms, the
recalibration approach gives
more accurate predictions

Both for all wind gust magnitudes
and extreme wind gusts

www.metoffice.gov.uk

RMSE, Kriged Observation Approach

RMSE(>25), Kriged Observation Approach
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RMSE, Interpolated NWP Model Approach
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Klaus

Kyrill
Xynthia
Quinten
Joachim
Andrea
Christian
Xaver

Drirk

Tini
Elon-Felix
Mike-Miklas
Egon

feus
Xavier
Herwart
Friederike
Miguel
Dragi-Eberhard
Bennet
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Conclusion

« Explored three approaches for using observations and meteorological NWP model for
estimating the windstorm footprint - separately and in combination

« The combined approach followed the hazard footprint recalibration approach of
Youngman and Stephenson (2019)

« For all 20 storms we have explored, the recalibration approach gives more
accurate predictions of ‘new’ observed wind gusts speeds

« This is true for wind gust speed of all magnitudes and extreme wind gusts (>25ms™)

 AXA should employ the recalibration method to achieve more accurate
representations of both historical and future windstorm footprints
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Applications: Vulnerability Modelling (Klaus Storm)

0.005
3 0.004 « 30% difference in
2 implied vulnerability
S .£ 0.003
v 2 « Consistency with gust
g = 0002 observations is necessary
= ool for model modularity
. « It also improves reliability
90 100 110 120 130 140 150 50 of comparisons
Wind gust (km/h) between events
Euro4 DRs Recalibrated DRs
Interpolated Vulnerability Euro4 Interpolated Vulnerability Recalibrated
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Applications: Event Response (Hagibis Typhoon)

* Improved alert systems and
loss prevention measures
thanks to finer vulnerability
knowledge

* Improved early estimations of
number of claims and total
event losses

* Improved claim handling and
urgent assistance services
thanks to better identification of
clients at risks

www.metoffice.gov.uk

L

Exposition by entities
AXA Singapore
*  AXA Winterthur
AXACS
AXAART
®  AXAXL Insurance
Hagibis - Wind Speed (avg 1min)
G | ] ] 34 - 40 knot
ey | w \ / 50 - 63 knot
: ) y \ > 64 knot

Snapshat from the internal Hagibis typhoon early event response report
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Extra slides
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ID | Storm Name Start Date | Impacted Countries

1 Klaus 23/01/2003 FRA

2 Kyrill 10/01/2007 BEL, CHE, DEU, FRA, GER, IRL, LUX, NLD
3 Xynthia 23/02/2010 BEL, CHE, DEU, FRA

4 Quinten 10/02/2009 FRA, BEL, NLD, DEU

5 Joachim 16/12/2011 CHE, DEU, FRA

& | Andrea 04/01/2012 BEL, CHE, DEU, FRA, GER, NLD

7 Christian 27/10/2013 BEL, DEU, DNK, GBR, NLD, SWE
8 Xaver 04/12/2013 DEU, DNK, GBR, NLD, NOR, SWE
3 Dirk 22/12/2013 FRA, GBR

10 | Tini 12/02/2014 GBR, IRL

11 | Elon-Felix 08/01/2015 DEU, DNK, GBR, NOR, SWE

12 | Mike-Niklas 30/03/2015 AUT, BEL, CHE, DEU, GER, NLD
13 | Egon 12/01/2017 DEU, FRA

14 | Zeus 05/03/2017 FRA

15 | Xavier 04/10/2017 DEU

16 | Herwart 28/10/2017 AUT, DEU

17 | Friederike 16/01/2018 BEL, DEU, GBR, NLD

18 | Miguel® 07/06/2013 POR, SPA,FRA, UK, NLD

19 | Dragi-Eberhard® 08/03/2013 BEL, CHE, DEU, FRA, GBR, LUX, NLD
20 | Bennet* 02/03/2013 BEL, CHE, DEU, FRA, LUX
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interp.surface

Percentile

Fast Bilinear Interpolator From A Grid.
Uses bilinear weights to interpolate values on & rectangular grid to arbitrary locations or to another grid
Keywords
Usage

interp.surface (cbj, lec)

interp.surface.grid(obj, grid.list)
Arguments
obj A list with components xy, and z in the same style as used by contour, persp, image etc. x and y are the X and Y grid values and z is a matrix with the

corresponding values of the surface

loc A matrix of (irregular) locations to interpolate. First column of loc isthe X coordinates and second is the Y's.
grid.list Alist with components x and y describing the grid to interpolate. The grids do not need to be equally spaced
Details

Here is a brief explanation of the interpolati e location, (locx, locy) lies in between the first two grid points in both x any. That is loox is between x1 and

x2 and locy is between y1 and y2. Let ex: The interpolant is

[N

(1-ex)(1-ey)*z11 + (1- ex)ey)*z12 + (ex)(1-ey) +(ex)ey)*z2.

Where the z's are the corresponding elements of the Z matrix.

eproduce higher behavior in the surface. For, example the extrema o
id, this function just includes a

Note that bilinear interpolation can produce some artif;
interpolated surface will always be at the parent grid locations. There is nothi
over one dimension and a call to the function for irregular locations. It was included in fields for convenience. since the grid format is so common

related to the grid and n
pecial about about interpolating to another

oop

See also the akima package for fast interpolation from irrgeular locations. Many thanks to Jean-Olivier Irisson for making this code more efficient and condise.

Value

An vector of interpolated values. NA are returned for regions of the obj$z that are NA and also for locations outside of the range of the parent grid.
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for B (Harville, 1974}, is given by

£0(0) — =2 = T (log(2x) + logd?) — éwau - %IH"{A(G)}"HI- (5)

2.2 Inference where
2.2.1 Parameter estimation A= (H'{A@)"H)H {A(0)} 'y, (6)
o= (y -~ HA(A0) 'y - HB). )

Relations (1) and (3) in Section 2.1 imply the marginal model n—gq

We choose @ to maximise Equation (5).
Y (s) |:r?(.u]‘ﬂz.|8. g~ (:‘.”(m(:::(.‘c)).nzw{ ), (1)
2.2.2 Actual process estimation
where m( ) is as in Relation (3) and o%¢(, ) = afey(, ) +a%ex(, ), as Relation (1) may be .
‘We can use an estimate of @, @, and the assumptions made in Section 2.1 to infer Z(s) for

written as a GP with covariance function (J'%d“yl: s ) For tractability, suppose that -m.(:r.')
the hazard event for any s € M. Noting that

h"’l(:c)ﬁ| where h( ) comprises g basis functions (e.g. h(x) (1, ::.')T} and B comprises g
regression coefficients. Depending on the forms chosen for the correlation functions, not ( Y ) ~ MVN (( Hp ) ( FA(0)  a%t(s) )) ) 8)
s h'

(1) 3 5247(s) Fhex(s, s
all their parameters, collectively denoted @, may be identifiable without prior knowledge, (=) FRs) ohex(s9)
in particular if both ex(, ) and ey(, ) contain nugget terms. We address this in Section where €7(s) = (ex(s1,8), .., ex(s,8)), it follows that
3 by specifying the measurement error. Relation (4) allows ns to directly establish the . P .
Y specilying “) Z()|Y =y ~ GP(m* (2(5)), (), (9)
relationship between the observations and simulator output and in turn perform inference. where
A possible drawback to this tractability is that only observation locations are used to infer ) - o 9. n -
I ¥ ) m* (a(s)) — b (x(s)) B + 5547 (s){5°A(6)) " (y — HB), (10)
Z(s), whereas in Fuentes et al. (2003) all simulator output locations are used. Careful . . .
(s); (2003) I (s,8) = 0% [ex(s,8') — 5%t () {52 A(6)}"e()]. (11)

consideration must be given as to whether observation locations are sufficient for inferring

. By PTILE .I &l k& Bl b ! e = \“ ifie y w‘ LEnf It

Z(s) for any s of interest. Implementation of equations (9){11) may be simplified by noting that
Lety = (u(xl Jouus __r;(_..;n))’ denote observations on a hazard event at locations sq, . . ., s, (GPA(0)} " = {Sx(0) + 521,) (12)

and let x = (:r.{.s-,}. s .:r:(s"])’ denote corresponding simulator output. Construct n x g ,};z[gx(é)]—l{[gx(é”—l tayL) (18)

matrix H with ith row h'(z(s;)) for i = 1,.. ., n, and the n x n matrix A(8) with (i, )th L

where I, is the n x n identity matrix and the (i, j)th elements of Yx(8) are given by

clement ¢(s;, s5). The restricted log-likelihood, obtained by integrating over a uniform prior A )
axex(si,s5).
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3. Recalibration

* In Youngman and Stephenson (2019) and here, we use cubic regression splines to
relate the NWP modelled wind gusts and orography with observed wind gusts

www.metoffice.gov.uk

10 20 30 40

NWP wind gust speed

log(1 + orogrpahy)
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RMSE, Kriged Observation Approach
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RMSE, Recalibration Approach

(d)

RMSE(>25), Kriged Observation Approach
1
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RMSE(>25), Recalibration Approach

RMSE, Interpolated NWP Model Approach

RMSE(>25), Interpolated NWP Model Approach
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RMSE, Recalibration Approach
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RMSE (>25), Recalibration Approach

RMSE, Interpalated NWP Model Approach

RAMSE, Interpolated NWP Model Approach

(c)
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RMSE, Kriged Observation Approach

(f)

* Miguel (Global)
& Dragi-Eberhard (Global)
+ Bennet (Global)
Miguel (EURO4)
© Dragi-Eberhard (EURO4)
Bennet (EURO4)
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RMSE, Kriged Observation Approac!
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