Understanding the Risk from Correlated Windstorms and Floods in the UK

Ollie Halliday(1,2) | Len Shaffrey (1) | Dimos Tsaknias (2)| Alex Siddaway(2) | Hannah Cloke(3,4) (1) National Centre for Atmospheric Science, United Kingdom (o.j.halliday@reading.ac.uk), (2) Lloyds Banking Group, General Insurance, United Kingdom., (3) University of Reading, United Kingdom., (4) Uppsala University, Sweden

A Thought Experiment

╋

References

1. The Great Storm of 1987, RMS Special Report.

2. U.K. Environment Agency

Great Storm of 1987

£2bn⁽¹⁾ (£5.526bn today)

Floods of winter 2013/14

£1.3bn⁽²⁾

Could extreme wind and flood events occur in tandem?

Are the two physically linked?

What are the implications for the insurance industry?

Talk Outline

- 1. Knowledge Transfer Partnerships (KTP)
- 2. What is our KTP?
- 3. Methodology
- 4. Spatial patterns in correlations between windstorm and high river flow
- 5. Case studies of some extreme compound events
- 6. The frequency of compound events
- 7. Summary

Knowledge Transfer Partnerships (KTP)

Innovate UK

- "UK-wide programme that has been helping businesses for the past 40 years to improve their competitiveness and productivity through the better use of knowledge"
- An extended research problem usually for **12 to 36 months**
- Shared funding between government (innovate UK) and a business
- Academic partners who take part in a KTP produce on average more than **3 new research projects** and **2 research papers** for each project.

Our Project

- Collaborative 2-year project venture between Reading University and insurers at Lloyds Banking Group
- Will use a combination of observations/reanalysis/climate simulations to understand the risk in correlated flood and windstorms in order to prepare for an extreme compound event
- Very little literature on this subject (Hillier et al. 2015, De Luca et al. 2017, and not much else!)
- Big problem for the Insurance industry, who currently do not know what to do. Any correlation will effect capital requirements.

National Centre for Atmospheric Science

Correlations in River Flow and Wind: Method

Data:

- ERA5 10m wind speed
- NRFA river gauge data
- 1979-2015

Method:

- 1. Choose a sample of locations
- 2. Filter river peak over threshold (POT)
- 3. Choose max wind and max flow during POT.
- 4. Extra filters (e.g. event proximity)

Figure: Scatter plot of NFRA maximum POT flow and ERA5 **maximum 10m wind speed** for London (Kingston), 1979-2015. Dashed lines show 99th percentile. Spearman correlation coefficient is printed in the top left.

Correlations in River Flow and Wind

London extreme: Winter 13/14

References

1. Environment Agency

2. UK Met Office

- Exceptionally wet period between
 Dec'13 and Feb'14.
- •8,342 homes were flooded and 4,859 businesses affected ⁽¹⁾
- •£1.3bn in economic losses⁽¹⁾ <u>Meterology</u>
- Relentless "conveyor belt" of low pressure systems hit Southern UK
 At least 12 major storms (Dec-Feb). Many were rapidly deepened by a strong jet stream. ⁽²⁾
- Extensive flooding + damaging windstorms!

Carlisle Extreme: Storm Desmond

References

1. PricewaterhouseCoopers (2015)

2. McCarthy et al. (2016)

- Winter 15-16
- 5,200 homes flooded, 43,000 without power
- Estimated £500m in damages⁽¹⁾
 <u>Meterology</u>
- Highest 24-hour total rainfall (341.4 mm)⁽²⁾
- Extra-tropical cyclone
- Atmospheric river advection of mild moist air from Atlantic
- Damaging winds and extreme flood a compound event! (albeit, flood dominated)

Winter 13/14 vs Desmond

2 different regimes, both led to compound events.

How frequent are compound events?

London History

Black lines = exceeding 99% in both wind and river

Events: 88 - Floods in Maidstone, London. 90 – Storm Daria

Red lines = exceeding 99% in wind and 99.9% in River

Events: Winter 13/14

The Likelihood of Extreme Compound Events

- More lines than expected! (~10,000 data points, would expect 1 compound point to exceed 99th percentile in both data if uncorrelated).
- Some locations have >10 times as many lines
- Nearly all locations have a very extreme event (red lines).

Wide-ranging Extreme Compound Events

- Winter 13/14 appears in 6 locations
- Daria (1990) appears in 8 locations
- Kyrill (2007), Lothar and Martin (1999)...
- Big events can affect large areas of the country
- Winter 13/14 floods estimated return period >100yrs (CEH)
- Daria estimated return period ~25-39yrs (Della-Marta 2009).

Summary

- 1. We have undertaken a research project with insurers at Lloyds Banking Group to asses the **risk of compound windstorm and flood**.
- 2. We have investigated **correlations in wind and stationed river flow** and found modest correlations in the South and West UK.
- 3. We have linked some **extreme compound events** to **named storms**. A number of these events affect multiple areas across the UK.
- 4. Compound event have occurred at a surprising frequency. In some locations, we find **more extreme compound events** than expected if windstorm and floods were uncorrelated.

Future Work

- 1. Find the physical mechanism that leads to extreme compound events
- Use a very long timeseries (~1000 years) of precipitation from a climate model (HiGEM) to examine the correlation in very extreme events.

Thanks! Questions?

Ollie Halliday(1,2) | Len Shaffrey (1) | Dimos Tsaknias (2) | Alex Siddaway(2) | Hannah Cloke(3,4) (1) National Centre for Atmospheric Science, United Kingdom (o.j.halliday@reading.ac.uk), (2) Lloyds Banking Group, General Insurance, United Kingdom., (3) University of Reading, United Kingdom., (4) Uppsala University, Sweden

Reserve Slides

Correlations in Precipitation and Wind

Data:

- ERA5 10m wind speed
- CHESS precipitation

Method:

- 1. Choose a sample of point locations
- 2. Designate time "windows"
- 3. Correlate accumulated rainfall and max wind over time window

Edinburgh-	0.2503	0.3452	0.3702	0.4063	0.3244
Carlisle-	0.331	0.452	0.4816	0.5275	0.4749
Newcastle-	0.0957	0.1329	0.1269	0.0795	-0.0682
York–	0.1875	0.2854	0.2511	0.2162	0.0834
Manchester-	0.3398	0.4492	0.4544	0.4591	0.3931
Leeds-	0.2832	0.3778	0.3701	0.3312	0.2502
Birmingham-	0.3123	0.4346	0.4219	0.3828	0.3555
Cardiff–	0.3419	0.4497	0.4497	0.4531	0.4091
Norwich-	0.2334	0.3657	0.3964	0.3541	0.2684
London-	0.2788	0.3909	0.4091	0.3853	0.2345
Brighton-	0.3766	0.5152	0.5392	0.5746	0.5225
Exeter-	0.3026	0.4083	0.414	0.41	0.3629
		1	I		
	1 day	3 day	5 day	10 day	21 day

Figure: Spearman correlation coefficients for the **accumulated** CHESS **rainfall** and ERA5 **maximum 10m wind speed**, for various accumulation periods and locations. Data shown is from an extended winter period only (NDJFM) for the time series 1979-2015.

Spatial Aggregations

WMids-	0.3219	0.4083	0.4017	0.3523	0.2201
EMids-	0.4942	0.5925	0.4764	0.6161	0.5338
WScot– EEng–	0.3597	0.451	0.4397	0.4001	0.308
NWEng-	0.4759	0.5913	0.6069	0.6071	0.4984
Yorks-	0.2276	0.2973	0.3058	0.2859	0.2294
NEEng-	0.4714	0.5815	0.6028	0.5763	0.5186
EScot-	0.387	0.4818	0.4805	0.4646	0.4402
NScot–	0.5351	0.6291	0.6361	0.6075	0.5689

Using gridded products allows us to spatially aggregate.	ERA5 CHESS-	0.5199	0.6486	0.6616	0.6494	0.5653	
Left: Spatial aggregations de increase correlation slightly		0.5011	0.6307		0.6346	0.5467	
but results broadly consistent with point locations.	ERAi CHESS-	0.5272				0.5862	
Right: we calculated a number for the whole	ERAi E-Obs-	0.5078	0.6397		0.654	0.5693	
country from various		1		5 days	10 100	01.1	
datasets.		1 day 3 day 5 day 10 day 21 day					
		Time Period					

Example Time window histograms

- 99th percentile in each dataset. Note: due to filtering (POT windows) scatter plots show **sub set** of data. Percentiles calculated from **full** timeseries.
- 2. Extract compound events from each location (red square)
 - No. of compound points = 228
 - No. of unique compound points = 157
- 3. Find corresponding storm tracks
 - Search files for any tracks which cross UK and have a matching timestep at any time in storm life time.
 - No. of storm tracks = 167 (i.e. some of compound events are happening at the same time as another storm?)