Feature-based classification of European windstorms
PhD-Project: Changes in European windstorm characteristics

Christian Passow

Supervisors:
Univ.-Prof. Dr. Uwe Ulbrich
Univ.-Prof. Dr. Henning Rust

Freie Universität Berlin

8th European Windstorm workshop, 2019
Windstorms

Anzahl – prozentuale Verteilung
- Hitzewelle, Lawine, Sonstige: 2%
- Winterschäden, Frost: 4%
- Waldbrand: 2%
- Erdbeben: 5%
- Sturzflut: 11%
- Überschwemmung: 8%
- Tornado: 5%
- Hagel: 8%
- Unwetter, Gewittersturm: 25%
- sonstige Stürme: 7%

Volkswirtschaftliche Schäden – prozentuale Verteilung
- Winterschäden, Frost: 3%
- Dürre, Hitzewelle: 1%
- Überschwemmung*: 15%
- Erdbeben: 1%
- Sturzflut: 4%
- Unwetter, Gewittersturm: 4%
- Tornado: 1%
- Hagel: 15%
- sonstige Stürme: 2%

Versicherte Schäden – prozentuale Verteilung
- Winterschäden, Frost: 5%
- Überschwemmung*: 8%
- Erdbeben: 1%
- Hagel: 1%
- Unwetter, Gewittersturm, sonstige Stürme: 2%
- Wintersturm: 20%
- Wintersturm: 64%

*Sturzfluten prozentual nicht relevant

Munich Re (1999)
Understanding windstorms

In conclusion:

Understanding atmospheric drivers behind windstorms of high socio-economical importance

- Statistically sound risk assessment and management
- Improvement of forecast systems
- More robust information on future risks of windstorms due to climate change
State of the art

Pinto et al. (2009)

- Extreme cyclones occur more frequently during strong positive NAO phase

Donat et al. (2010)

- Westerly flow regimes and positive NAO phase associated with the majority of storm days

Walz et al. (2018)

- Drivers may change depending on the region of interest. NAO alone is not sufficient to assess winter windstorm hazard

Wild et al. (2015)

- Meridional temperature gradient between North American continent and western Atlantic SSTs is positively correlated to windstorm frequency over North Atlantic and Europe
The Project

- Past studies focused primarily on "more statistical" characteristics, e.g. . . .
 - Inter-annual variability
 - Serial clustering
 - Occurrence
 - Trends
- Only a few studies focus on the basic windstorm characteristics such as . . .
 - Intensity
 - Duration
 - Spatial extension
 - Shape

Aim:

1. Quantification of these characteristics
2. Identification and understanding of key parameters determining these characteristics
Quantification of windstorm characteristics

- Clustering windstorms based on basic features
- Summary statistics
- Storm tracks
Data & tracking

ERA5:
- Fifth generation ECMWF atmospheric reanalysis of the global climate
- Horizontal resolution: 0.25° x 0.25°
- Period: 1981-2017, extended winter ONDJFM
- Temporal resolution: 6 hours

Tracking:
- WTRACK algorithm (Kruschke, 2014)
 - Exceedence of local climatological 98th percentile
 - Nearest-Neighbor search
 - Storm duration of > 24h and area of > 150,000 km²
- Boundary: full grid
- Innerbox: EURO-CORDEX region (40.25°W–75.25°E, 25.25°N–75.75°N)
Clustering - Preparing the data

Raw WTRACK output:

<table>
<thead>
<tr>
<th>DATE INDEX</th>
<th>INDEX</th>
<th>SIZE</th>
<th>AREA [km²]</th>
<th>LAT</th>
<th>RADIUS [km]</th>
<th>MEANV [m/s]</th>
<th>STDV</th>
<th>MINV [m/s]</th>
<th>MAXV [m/s]</th>
<th>LONMAX</th>
<th>LATMAX [°]</th>
<th>SSIn</th>
<th>SSIs</th>
<th>SSIu</th>
<th>SSIan</th>
</tr>
</thead>
<tbody>
<tr>
<td>19990100100</td>
<td>1</td>
<td>67</td>
<td>28.164</td>
<td>-86.12</td>
<td>72.57</td>
<td>983.53</td>
<td>8.86</td>
<td>2.63</td>
<td>3.78</td>
<td>13.58</td>
<td>-90.69</td>
<td>72.89</td>
<td>0.10649</td>
<td>77.73</td>
<td>19937.1</td>
</tr>
<tr>
<td>19990100106</td>
<td>1</td>
<td>73</td>
<td>36.126</td>
<td>-79.38</td>
<td>71.46</td>
<td>736.21</td>
<td>8.81</td>
<td>2.17</td>
<td>3.91</td>
<td>12.79</td>
<td>-90.69</td>
<td>72.89</td>
<td>0.10649</td>
<td>77.73</td>
<td>19937.1</td>
</tr>
<tr>
<td>19990100112</td>
<td>1</td>
<td>45</td>
<td>22.182</td>
<td>-71.32</td>
<td>78.97</td>
<td>544.13</td>
<td>9.12</td>
<td>2.46</td>
<td>3.75</td>
<td>12.68</td>
<td>-68.62</td>
<td>72.00</td>
<td>0.09805</td>
<td>24.01</td>
<td>16481.0</td>
</tr>
<tr>
<td>19990100118</td>
<td>1</td>
<td>45</td>
<td>21.251</td>
<td>-73.61</td>
<td>72.47</td>
<td>635.94</td>
<td>10.36</td>
<td>2.94</td>
<td>3.78</td>
<td>15.40</td>
<td>-73.12</td>
<td>73.12</td>
<td>0.17330</td>
<td>158.19</td>
<td>23818.9</td>
</tr>
<tr>
<td>19990100200</td>
<td>1</td>
<td>42</td>
<td>19.132</td>
<td>-78.59</td>
<td>72.42</td>
<td>359.36</td>
<td>12.16</td>
<td>2.75</td>
<td>5.61</td>
<td>15.87</td>
<td>-69.75</td>
<td>73.12</td>
<td>0.18027</td>
<td>283.49</td>
<td>31816.9</td>
</tr>
<tr>
<td>19990100206</td>
<td>1</td>
<td>34</td>
<td>15.675</td>
<td>-68.60</td>
<td>72.71</td>
<td>333.61</td>
<td>12.38</td>
<td>1.47</td>
<td>8.51</td>
<td>14.63</td>
<td>-66.38</td>
<td>72.00</td>
<td>0.02368</td>
<td>47.25</td>
<td>25026.9</td>
</tr>
</tbody>
</table>

Event: 1999000016 Start: 1999010012 Length: 7 Area: 228.979 SSIscaled: 8.13047

Feature table:

- Duration [h]
- First and last sighting (lon,lat)
- Maximal area and radius [km]
- Mean, minimum and maximum wind speed [m/s]
- Mean and maximum SSI

Feature-based classification, Windstorm workshop 2019
Clustering - Method

K-Means clustering
1. k random centroids (initialization)
2. Observations are assigned to nearest centroid (assignments)
 ▶ Squared Euclidean distance
3. New centroids by averaging cluster members (updating)
4. Repeat 2-3 until assignments do not change anymore

Setting
▶ k varies from 2-10
▶ Ensemble approach (50 member ensemble)
▶ Best-fit
Clustering - Results

<table>
<thead>
<tr>
<th>Cluster No. 1</th>
<th>Cluster No. 2</th>
<th>Cluster No. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.5</td>
<td>duration</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>firstdetlon</td>
<td>1.0</td>
</tr>
<tr>
<td>0.5</td>
<td>firstdetlat</td>
<td>1.5</td>
</tr>
<tr>
<td>1.0</td>
<td>lastdetlon</td>
<td>duration</td>
</tr>
<tr>
<td>1.5</td>
<td>maxarea</td>
<td>firstdetlon</td>
</tr>
<tr>
<td></td>
<td>maxradius</td>
<td>firstdetlat</td>
</tr>
<tr>
<td></td>
<td>maxv</td>
<td>lastdetlon</td>
</tr>
<tr>
<td></td>
<td>meanv</td>
<td>lastdetlat</td>
</tr>
<tr>
<td></td>
<td>minv</td>
<td>maxarea</td>
</tr>
<tr>
<td></td>
<td>SSImean</td>
<td>maxradius</td>
</tr>
<tr>
<td></td>
<td>SSImax</td>
<td>maxv</td>
</tr>
</tbody>
</table>
Clustering - Results

Cluster No. 1

Cluster No. 2

Cluster No. 3
Clustering - Results

<table>
<thead>
<tr>
<th>k</th>
<th>Ave. wind speeds [m/s]</th>
<th>Peak [m/s]</th>
<th>Dur. [h]</th>
<th>Area</th>
<th>N</th>
<th>SSI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Minim.</td>
<td>Maxim.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>17.33</td>
<td>10.35</td>
<td>24.41</td>
<td>38.3</td>
<td>39</td>
<td>422</td>
</tr>
<tr>
<td>2</td>
<td>11.03</td>
<td>5.54</td>
<td>18.41</td>
<td>27.65</td>
<td>35</td>
<td>347</td>
</tr>
<tr>
<td>3</td>
<td>13.11</td>
<td>6.07</td>
<td>23.06</td>
<td>35.75</td>
<td>65</td>
<td>1400</td>
</tr>
</tbody>
</table>
Identification of key parameters (coming soon)

- Classification task
- Supervised learning algorithms: Decision trees, GLMs, ...
Challenges - How to represent the field?

Region of interest

Innerbox
Challenges - How to represent the field?

Feature-based classification, Windstorm workshop 2019
Challenges - Overlap

Feature-based classification, Windstorm workshop 2019
Summary

- Clusters suggest different types of windstorms
- Tracks are neither separated in space nor time
- Designing the right data set for the task is no trivial matter
- Better differentiation through careful selection of meteorological fields and areas

